空論上の砂、楼閣上の机。

The Castle of Indolence

n! が平方数になることはあるのか?

補題1. (Bertrand の仮説) 任意の自然数 $n$ に対して, $n < p \leq 2n$ を満たす素数 $p$ が存在する.
命題2. $n!$ が平方数となるための必要十分条件は $n=1$ である.
証明. $n \geq 2$ のとき $n!$ は素因数を少なくとも $1$ つもつので, 最大の素因数 $p$ を取ってこれる. $n!$ が平方数であると仮定すると, $p$ で $2$ 回以上割れなければならないから $n \geq 2p$ である. しかし Bertrand の仮説より $p$ より大きく $n$ 以下の素数が存在するので $p$ の最大性に反する.