空論上の砂、楼閣上の机。

The Castle of Indolence

極座標における回転体の体積 (2012年 慶医数学 第4問・2009年 京大理系数学 第5問・2017年 東大理系数学 第6問)

問題1. (2012年慶医第4問・一部省略) (1) $0\leqq\alpha0$ とする. 極座標 $(r,\theta)$ に関する条件 $$0\leqq r\leqq R,\ \alpha\leqq\theta\leqq\beta$$ により定まる図形を $x$ 軸のまわりに回転させて得られる立体の体積を $T$ とする. $T$ を $\alpha$…

Markov 兄弟の不等式 (1988年 東工大数学 第2問)

定理1. (Markov 兄弟の不等式) $\lVert f\rVert\coloneqq\displaystyle\max_{-1\leqq x\leqq1}|f(x)|$ と定め, $p$ を $n$ 次以下の多項式, $T_n(x)$ を第一種 Chebyshev 多項式とすると, $$\lVert p^{(k)}\rVert\leqq\lVert T_n^{(k)}\rVert\lVert p\rVert$…

前文の内容全体を意味上の主語とする結果の分詞構文 (1995年 阪大後期英語)

By its nature, the expensive habit is not only physically gratifying but also beyond the financial reach of all but a fortunate few, thus making it a treat for the mind as well as the body. There is no lasting satisfaction to be gained fro…

ダイアモンドの二項演算 (AMC 10A 2016 #23・USA TSTST 2019-1)

問題1. (AMC 10A 2016 #23) A binary operation $\operatorname{\diamondsuit}$ has the properties that $a\operatorname{\diamondsuit}(b\operatorname{\diamondsuit}c) = (a\operatorname{\diamondsuit}b)\cdot c$ and that $a\operatorname{\diamondsuit…

すべての鋭角三角形に対し各面がそれと合同な四面体が存在すること (1999年 京大後期理系数学 第4問)

問題. (1999年 京大後期理系 第4問) $\triangle{ABC}$ は鋭角三角形とする. このとき, 各面すべてが $\triangle{ABC}$ と合同な四面体が存在することを示せ. 注. すべての面が合同な四面体のことを等面四面体と呼ぶ. 証明. $\triangle{ABC}$ は鋭角三角形な…

鏡像法 (1980年 東大物理 第2問)

平板導体に電荷を近づけると, その付近の導体表面に反対符号の電荷が誘導されて, 導体と電荷の間に静電気力が働く. この力 $\overrightarrow{F}$ を求めるため, 以下の設問の順にしたがって調べてみよう. まず, 距離 $2a$ だけ離れた 2 点 Q, Q' にそれぞれ…

「偉いのでXした」構文

世の中にはオタク構文なるものが絶えず生成されていますが、その中でもあまり脚光を浴びていないのに知らず知らずのうちに影響力を持っていると筆者が考えるものとして「偉いのでXした」という構文があります。実例としてはTwitterを見るしかなく、2020年11…

二重鉤括弧の書き方

二重鉤括弧とは『』のことですが、板書などでは のように厚みが出ることで不格好な感じになることが多いかと思います。ほとんどの場合は のように一筆書きで書いているからです。字の綺麗さを気にするようになった中学生のあたりから折に触れてこの問題に悩…

Lagrange 補間 (1961年 東大文理共通数学 第2問, 2002年 京大後期理系数学 第4問)

問題1. (1961年 東大文理共通 第2問) $x$ の四次式 $f(x)$ において $$\begin{aligned} f(-0.2)&=2.226\\ f(-0.1)&=2.460\\ f(0)&=2.718\\ f(0.1)&=3.004\\ f(0.2)&=3.320 \end{aligned}$$ であるとき, $f'(0)$ を求めよ. もちろん $f(x)=ax ^ 4+bx ^ 3+cx ^…

第2の that の省略

免責事項. 本稿はまだ筆者が整理しきれていないことを書き連ねた現在整備中の記事です。予想外に読者諸賢からコメントを頂けたので、受験勉強の合間を縫ってちょこちょこ書くつもりですが、実質的にまだ書き途中の記事になっていることをご了承ください。 伊…

並べ替え不等式・Chebyshev の不等式 (1987年 東大理系 第5問, 1986年 京大文理共通 第1問)

今回の記事はどうしても横に長くなるので横スクロールしていただく数式がそれなりに多くあります. PC やタブレットの場合は問題なく表示されますが, スマートフォンなどの場合で不自然だと思ったら右のスクロールしていただくようお願い申し上げます. 定理1.…

対称式の小ネタ

有理数 $a,b,c$ に対し, $a+b+c, 2(ab+bc+ca), 3abc$ が整数であったならば, $a,b,c$ は整数となることを示せ. $\alpha=a+b+c, \beta=2(ab+bc+ca), \gamma=3abc$ とおく. 方程式 $6(x-a)(x-b)(x-c)=6x ^ 3-6\alpha x ^ 2+3\beta x-2\gamma=0$ の解 $a,b,c$ …

数列の和から一般項を求めるときの場合分け

数列 ${a_n}$ の初項から第 $n$ 項までの和を $S_n$ とするとき, 次の等式が成り立つ. $$a _ n=\begin{cases} S _ n-S _ {n-1} & (n \geq 2)\\ S _ 1 & (n=1) \end{cases}$$ 数列 $a_n$ の初項から第 $n$ 項までの和 $S _ n$ が $S _ n=2 ^ n$ であるとき, …

軸の直交する放物線が4点で交わるなら共円

直交する放物線の軸が $x$ 軸, $y$ 軸に平行になるように座標軸を設定すると, 放物線の方程式は $py=x ^ 2+ax+b,$ $qx=y ^ 2+cy+d$ と表される. 共有点を $4$ つ持っているので, $$Q = \dfrac{ (q-a) ^ 2}{4} + \dfrac{ (p-c) ^ 2}{4} - b - d$$ とおくと, $…

1979年 京大理系数学 第3問

(1) は微分でゴリ押す以外にはこれしか方法がないはずですが, (2) に関してはこれが一番速くて自然だと思います. 勘違いをしていたらぜひ教えて下さい. (1) 変数 $t$ が $t>0$ の範囲を動くとき $$\begin{aligned} f(t) &=\sqrt{t}+\frac{1}{\sqrt{t}}+\sqrt…